Перевод: с английского на все языки

со всех языков на английский

the use of steel in industry

  • 1 use

    I ju:z verb
    1) (to employ (something) for a purpose: What did you use to open the can?; Use your common sense!) usar, utilizar
    2) (to consume: We're using far too much electricity.) consumir, gastar
    - used
    - user
    - user-friendly
    - user guide
    - be used to something
    - be used to
    - used to

    II ju:s
    1) (the act of using or state of being used: The use of force to persuade workers to join a strike cannot be justified; This telephone number is for use in emergencies.) uso, utilización
    2) (the/a purpose for which something may be used: This little knife has plenty of uses; I have no further use for these clothes.) uso
    3) ((often in questions or with negatives) value or advantage: Is this coat (of) any use to you?; It's no use offering to help when it's too late.) utilidad
    4) (the power of using: She lost the use of her right arm as a result of the accident.) uso
    5) (permission, or the right, to use: They let us have the use of their car while they were away.) uso
    - usefulness
    - usefully
    - useless
    - be in use
    - out of use
    - come in useful
    - have no use for
    - it's no use
    - make good use of
    - make use of
    - put to good use
    - put to use

    use1 n
    1. uso / empleo
    they gave me the use of their car me dejaron utilizar su coche / pusieron su coche a mi disposición
    2. sentido
    what's the use of spending all that money? ¿qué sentido tiene gastar tanto dinero? / ¿para qué gastar tanto dinero?
    it's no use ringing the bell, there's nobody in es inútil llamar al timbre, no hay nadie en casa
    use2 vb usar / utilizar
    what do you use to clean the paintbrushes? ¿qué usas para limpiar los pinceles?
    how do you use this machine? ¿cómo se utiliza esta máquina?
    tr[ (n) jʊːs; (vb) jʊːz]
    1 uso, empleo, utilización nombre femenino
    directions for use instrucciones de uso, modo de empleo
    2 (handling) manejo
    4 (right to use, power to use) uso
    1 usar, utilizar
    what do you use to remove stains? ¿qué usas para quitar manchas?
    use your handkerchief! ¡utiliza el pañuelo!
    don't cross the road, use the subway no cruces la carretera, utiliza el paso subterráneo
    2 (consume) gastar, consumir
    3 (exploit unfairly) aprovecharse de
    4 familiar (need) necesitar
    1 (In this sense, if no habit is involved, translate using the imperfect) (past habits) soler, acostumbrar
    where did you use to live? ¿dónde vivías antes?
    \
    SMALLIDIOMATIC EXPRESSION/SMALL
    in use en uso, que se está utilizando
    it's no use no sirve de nada, es inútil
    'Not in use' "No funciona"
    out of use desusado,-a
    to be of use ser útil, ser de utilidad
    what's the use of...? ¿de qué sirve... ?
    what's the use of crying? ¿de qué sirve llorar?
    use ['ju:z] v, used ['ju:zd,] in phrase „used to” usually ['ju:stu:] ; using vt
    1) employ: emplear, usar
    2) consume: consumir, tomar (drogas, etc.)
    3) utilize: usar, utilizar
    to use tact: usar tacto
    he used his friends to get ahead: usó a sus amigos para mejorar su posición
    4) treat: tratar
    they used the horse cruelly: maltrataron al caballo
    5)
    to use up : agotar, consumir, gastar
    winters used to be colder: los inviernos solían ser más fríos, los inviernos eran más fríos
    she used to dance: acostumbraba bailar
    use ['ju:s] n
    1) application, employment: uso m, empleo m, utilización f
    out of use: en desuso
    ready for use: listo para usar
    to be in use: usarse, estar funcionando
    to make use of: servirse de, aprovechar
    2) usefulness: utilidad f
    to be of no use: no servir (para nada)
    it's no use!: ¡es inútil!
    3)
    to have the use of : poder usar, tener acceso a
    4)
    to have no use for : no necesitar
    she has no use for poetry: a ella no le gusta la poesía
    v.
    emplear (Utilizar) v.
    soler v.
    usar v.
    utilizar v.
    n.
    empleo s.m.
    estilo s.m.
    gasto s.m.
    manejo s.m.
    usanza s.f.
    uso s.m.
    utilidad s.f.

    I juːs
    1) u (of machine, substance, method, word) uso m, empleo m, utilización f

    instructions for use — instrucciones, modo de empleo

    the use of forceel empleo or uso de la fuerza

    to lose the use of an arm — perder* el uso de un brazo

    to be in use\<\<machine\>\> estar* funcionando or en funcionamiento; \<\<word/method\>\> emplearse, usarse

    to make use of something — usar algo, hacer* uso de algo

    I must make better use of my timedebo emplear or aprovechar mejor el tiempo

    to put something to good use — hacer* buen uso de algo

    2) c (application, function) uso m

    she has her uses — para algo sirve, a veces nos (or les etc) es útil

    3) u ( usefulness)

    to be (of) use to somebody — serle* útil or de utilidad a alguien, servirle* a alguien

    I'm not much use at cooking — no se me da muy bien la cocina, no sirvo para cocinar

    is this (of) any use to you? — ¿te sirve de algo esto?

    it's no use — es inútil, no hay manera, no hay caso (AmL)

    it's no use complaining — de nada sirve quejarse, no se consigue nada quejándose or con quejarse

    what's the use (of -ing)? — ¿de qué sirve (+ inf)?, ¿qué sentido tiene (+ inf)?

    to have the use of somebody's car/office — poder* usar el coche/la oficina de alguien


    II
    1. juːz
    1)
    a) (for task, purpose) usar

    a technique used in this treatmentuna técnica que se emplea or se utiliza or se usa en este tratamiento

    use your head/imagination — usa la cabeza/la imaginación

    to use something to + INF — usar or utilizar* algo para + inf

    use a knife to open itusa or utiliza un cuchillo para abrirla, ábrela con un cuchillo

    what's this used for? — ¿y esto para qué sirve or para qué se usa?

    b) ( avail oneself of) \<\<service/facilities\>\> utilizar*, usar, hacer* uso de

    may I use your phone? — ¿puedo hacer una llamada or llamar por teléfono?

    may I use your toilet? — ¿puedo pasar or ir al baño?

    2) ( do with) (colloq)

    I could use a drink/the money — no me vendría mal un trago/el dinero

    3) ( consume) \<\<food/fuel\>\> consumir, usar; \<\<money\>\> gastar

    use by 3 Feb 97 — fecha de caducidad: 3 feb 97, consumir antes del 3 feb 97

    4) (manipulate, exploit) (pej) utilizar*, usar (esp AmL)

    2.
    v mod juːs (in neg, interrog sentences)

    where did you use to live? — ¿dónde vivías?; see also used II

    Phrasal Verbs:
    [juːs]
    1. N
    1) (=act of using) uso m, empleo m, utilización f ; (=handling) manejo m

    the use of steel in industryel empleo or la utilización or el uso del acero en la industria

    care in the use of gunscuidado m en el manejo de las armas de fuego

    fit for use — servible, en buen estado

    in use, word in use — palabra f en uso or que se usa

    to make use of — hacer uso de, usar; [+ right etc] valerse de, ejercer

    out of use — en desuso

    it is now out of use — ya no se usa, está en desuso

    to go or fall out of use — caer en desuso

    to put sth to good use — hacer buen uso de algo, sacar partido or provecho de algo

    ready for use — listo (para ser usado)

    it improves with use — mejora con el uso

    2) (=way of using) modo m de empleo; (=handling) manejo m
    3) (=function) uso m

    can you find a use for this? — ¿te sirve esto?

    4) (=usefulness) utilidad f

    to be of use — servir, tener utilidad

    can I be of any use? — ¿puedo ayudar?

    to be no use, he's no use as a teacher — no vale para profesor, no sirve como profesor

    it's (of) no use — es inútil, no sirve para nada

    it's no use discussing it furtheres inútil or no vale la pena seguir discutiendo

    I have no further use for it — ya no lo necesito, ya no me sirve para nada

    I've no use for those who... — no aguanto a los que...

    what's the use of all this? — ¿de qué sirve todo esto?

    5) (=ability to use, access)

    to have the use of, to have the use of a garage — tener acceso a un garaje

    I have the use of it on Sundays — me permiten usarlo los domingos, lo puedo usar los domingos

    I have the use of the kitchen until 6p.m. — puedo or tengo permitido usar la cocina hasta las seis

    he lost the use of his arm — se le quedó inútil el brazo

    6) (Ling) (=sense) uso m, sentido m
    7) frm (=custom) uso m, costumbre f
    2. [juːz]
    VT
    1) (gen) usar, emplear, utilizar

    he used a knifeempleó or usó or utilizó un cuchillo

    are you using this book? — ¿te hace falta este libro?

    which book did you use? — ¿qué libro consultaste?

    have you used a gun before? — ¿has manejado alguna vez una escopeta?

    to use sth as a hammer — emplear or usar algo como martillo

    to be used, what's this used for? — ¿para qué sirve esto?, ¿para qué se utiliza esto?

    I could use a drink! * — ¡no me vendría mal un trago!

    to use sth for, to use sth for a purpose — servirse de algo con un propósito

    to use forceemplear la fuerza

    careful how you use that razor! — ¡cuidado con la navaja esa!

    to use every meansemplear todos los medios a su alcance ( to do sth para hacer algo)

    2) (=make use of, exploit) usar, utilizar

    he wants to use the bathroom — quiere usar el cuarto de baño; (=go to the toilet) quiere ir al lavabo or (LAm) al baño

    someone is using the bathroomel lavabo or (LAm) el baño está ocupado

    use your head or brains! * — ¡usa el coco! *

    3) (=consume) [+ fuel] consumir

    have you used all the milk? — ¿has terminado toda la leche?

    4) (=treat) tratar

    she had been cruelly used by... — había sido tratada con crueldad por...

    to use sb roughlymaltratar a algn

    to use sb welltratar bien a algn

    3.
    VI (Drugs) ** drogarse
    4.
    [juːs]
    AUX VB (gen) soler, acostumbrar (a)

    I used to go camping as a childde pequeño solía or acostumbraba ir de acampada

    I didn't use to like maths, but now I love it — antes no me gustaban las matemáticas, pero ahora me encantan

    * * *

    I [juːs]
    1) u (of machine, substance, method, word) uso m, empleo m, utilización f

    instructions for use — instrucciones, modo de empleo

    the use of forceel empleo or uso de la fuerza

    to lose the use of an arm — perder* el uso de un brazo

    to be in use\<\<machine\>\> estar* funcionando or en funcionamiento; \<\<word/method\>\> emplearse, usarse

    to make use of something — usar algo, hacer* uso de algo

    I must make better use of my timedebo emplear or aprovechar mejor el tiempo

    to put something to good use — hacer* buen uso de algo

    2) c (application, function) uso m

    she has her uses — para algo sirve, a veces nos (or les etc) es útil

    3) u ( usefulness)

    to be (of) use to somebody — serle* útil or de utilidad a alguien, servirle* a alguien

    I'm not much use at cooking — no se me da muy bien la cocina, no sirvo para cocinar

    is this (of) any use to you? — ¿te sirve de algo esto?

    it's no use — es inútil, no hay manera, no hay caso (AmL)

    it's no use complaining — de nada sirve quejarse, no se consigue nada quejándose or con quejarse

    what's the use (of -ing)? — ¿de qué sirve (+ inf)?, ¿qué sentido tiene (+ inf)?

    to have the use of somebody's car/office — poder* usar el coche/la oficina de alguien


    II
    1. [juːz]
    1)
    a) (for task, purpose) usar

    a technique used in this treatmentuna técnica que se emplea or se utiliza or se usa en este tratamiento

    use your head/imagination — usa la cabeza/la imaginación

    to use something to + INF — usar or utilizar* algo para + inf

    use a knife to open itusa or utiliza un cuchillo para abrirla, ábrela con un cuchillo

    what's this used for? — ¿y esto para qué sirve or para qué se usa?

    b) ( avail oneself of) \<\<service/facilities\>\> utilizar*, usar, hacer* uso de

    may I use your phone? — ¿puedo hacer una llamada or llamar por teléfono?

    may I use your toilet? — ¿puedo pasar or ir al baño?

    2) ( do with) (colloq)

    I could use a drink/the money — no me vendría mal un trago/el dinero

    3) ( consume) \<\<food/fuel\>\> consumir, usar; \<\<money\>\> gastar

    use by 3 Feb 97 — fecha de caducidad: 3 feb 97, consumir antes del 3 feb 97

    4) (manipulate, exploit) (pej) utilizar*, usar (esp AmL)

    2.
    v mod [juːs] (in neg, interrog sentences)

    where did you use to live? — ¿dónde vivías?; see also used II

    Phrasal Verbs:

    English-spanish dictionary > use

  • 2 industry

    'indəstri
    plural - industries; noun
    1) ((any part of) the business of producing or making goods: the ship-building industry; The government should invest more money in industry.) industria
    2) (hard work or effort: He owed his success to both ability and industry.) diligencia
    - industrialist
    - industrialized
    - industrialised
    - industrialization
    - industrialisation
    - industrious
    - industrial estate
    - industrial relations

    industry n industria
    tr['ɪndəstrɪ]
    1 (gen) industria
    2 formal use (hard work) diligencia
    industry ['ɪndəstri] n, pl - tries
    1) diligence: diligencia f, aplicación f
    2) : industria f
    the steel industry: la industria siderúrgica
    n.
    diligencia s.f.
    industria s.f.
    laboriosidad s.f.
    'ɪndəstri
    noun (pl - tries)
    1)
    a) u ( in general) industria f
    b) c ( particular branch) industria f

    the steel/textile industry — la industria siderúrgica/textil

    2) u ( hard work) (frml) laboriosidad f, diligencia f, aplicación f
    ['ɪndǝstrɪ]
    N

    the steel/coal/textile industry — la industria siderúrgica/minera/textil

    the banking/insurance/hotel industry — el sector bancario/de seguros/hotelero

    heavy 4.
    2) (=industriousness) laboriosidad f, aplicación f
    * * *
    ['ɪndəstri]
    noun (pl - tries)
    1)
    a) u ( in general) industria f
    b) c ( particular branch) industria f

    the steel/textile industry — la industria siderúrgica/textil

    2) u ( hard work) (frml) laboriosidad f, diligencia f, aplicación f

    English-spanish dictionary > industry

  • 3 modular data center

    1. модульный центр обработки данных (ЦОД)

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > modular data center

  • 4 Riley, James

    SUBJECT AREA: Metallurgy
    [br]
    b. 1840 Halifax, England
    d. 15 July 1910 Harrogate, England
    [br]
    English steelmaker who promoted the manufacture of low-carbon bulk steel by the open-hearth process for tin plate and shipbuilding; pioneer of nickel steels.
    [br]
    After working as a millwright in Halifax, Riley found employment at the Ormesby Ironworks in Middlesbrough until, in 1869, he became manager of the Askam Ironworks in Cumberland. Three years later, in 1872, he was appointed Blast-furnace Manager at the pioneering Siemens Steel Company's works at Landore, near Swansea in South Wales. Using Spanish ore, he produced the manganese-rich iron (spiegeleisen) required as an additive to make satisfactory steel. Riley was promoted in 1874 to be General Manager at Landore, and he worked with William Siemens to develop the use of the latter's regenerative furnace for the production of open-hearth steel. He persuaded Welsh makers of tin plate to use sheets rolled from lowcarbon (mild) steel instead of from charcoal iron and, partly by publishing some test results, he was instrumental in influencing the Admiralty to build two naval vessels of mild steel, the Mercury and the Iris.
    In 1878 Riley moved north on his appointment as General Manager of the Steel Company of Scotland, a firm closely associated with Charles Tennant that was formed in 1872 to make steel by the Siemens process. Already by 1878, fourteen Siemens melting furnaces had been erected, and in that year 42,000 long tons of ingots were produced at the company's Hallside (Newton) Works, situated 8 km (5 miles) south-east of Glasgow. Under Riley's leadership, steelmaking in open-hearth furnaces was initiated at a second plant situated at Blochairn. Plates and sections for all aspects of shipbuilding, including boilers, formed the main products; the company also supplied the greater part of the steel for the Forth (Railway) Bridge. Riley was associated with technical modifications which improved the performance of steelmaking furnaces using Siemens's principles. He built a gasfired cupola for melting pig-iron, and constructed the first British "universal" plate mill using three-high rolls (Lauth mill).
    At the request of French interests, Riley investigated the properties of steels containing various proportions of nickel; the report that he read before the Iron and Steel Institute in 1889 successfully brought to the notice of potential users the greatly enhanced strength that nickel could impart and its ability to yield alloys possessing substantially lower corrodibility.
    The Steel Company of Scotland paid dividends in the years to 1890, but then came a lean period. In 1895, at the age of 54, Riley moved once more to another employer, becoming General Manager of the Glasgow Iron and Steel Company, which had just laid out a new steelmaking plant at Wishaw, 25 km (15 miles) south-east of Glasgow, where it already had blast furnaces. Still the technical innovator, in 1900 Riley presented an account of his experiences in introducing molten blast-furnace metal as feed for the open-hearth steel furnaces. In the early 1890s it was largely through Riley's efforts that a West of Scotland Board of Conciliation and Arbitration for the Manufactured Steel Trade came into being; he was its first Chairman and then its President.
    In 1899 James Riley resigned from his Scottish employment to move back to his native Yorkshire, where he became his own master by acquiring the small Richmond Ironworks situated at Stockton-on-Tees. Although Riley's 1900 account to the Iron and Steel Institute was the last of the many of which he was author, he continued to contribute to the discussion of papers written by others.
    [br]
    Principal Honours and Distinctions
    President, West of Scotland Iron and Steel Institute 1893–5. Vice-President, Iron and Steel Institute, 1893–1910. Iron and Steel Institute (London) Bessemer Gold Medal 1887.
    Bibliography
    1876, "On steel for shipbuilding as supplied to the Royal Navy", Transactions of the Institute of Naval Architects 17:135–55.
    1884, "On recent improvements in the method of manufacture of open-hearth steel", Journal of the Iron and Steel Institute 2:43–52 plus plates 27–31.
    1887, "Some investigations as to the effects of different methods of treatment of mild steel in the manufacture of plates", Journal of the Iron and Steel Institute 1:121–30 (plus sheets II and III and plates XI and XII).
    27 February 1888, "Improvements in basichearth steel making furnaces", British patent no. 2,896.
    27 February 1888, "Improvements in regenerative furnaces for steel-making and analogous operations", British patent no. 2,899.
    1889, "Alloys of nickel and steel", Journal of the Iron and Steel Institute 1:45–55.
    Further Reading
    A.Slaven, 1986, "James Riley", in Dictionary of Scottish Business Biography 1860–1960, Volume 1: The Staple Industries (ed. A.Slaven and S. Checkland), Aberdeen: Aberdeen University Press, 136–8.
    "Men you know", The Bailie (Glasgow) 23 January 1884, series no. 588 (a brief biography, with portrait).
    J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Harvard University Press (contains an excellent summary of salient events).
    JKA

    Biographical history of technology > Riley, James

  • 5 Hadfield, Sir Robert Abbott

    SUBJECT AREA: Metallurgy
    [br]
    b. 28 November 1858 Attercliffe, Sheffield, Yorkshire, England
    d. 30 September 1940 Kingston Hill, Surrey, England
    [br]
    English metallurgist and pioneer in alloy steels.
    [br]
    Hadfield's father, Robert, set up a steelworks in Sheffield in 1872, one of the earliest to specialize in steel castings. After his education in Sheffield, during which he showed an interest in chemistry, Hadfield entered his father's works. His first act was to set up a laboratory, where he began systematically experimenting with alloy steels in order to improve the quality of the products of the family firm. In 1883 Hadfield found that by increasing the manganese content to 12.5 per cent, with a carbon content of 1.4 per cent, the resulting alloy showed extraordinary resistance to abrasive wear even though it was quite soft. It was soon applied in railway points and crossings, crushing and grinding machinery, and wherever great resistance to wear is required. Its lack of brittleness led to its use in steel helmets during the First World War. Hadfield's manganese steel was also non-magnetic, which was later of importance in the electrical industry. Hadfield's other great invention was that of silicon steel. Again after careful and systematic laboratory work, Hadfield found that a steel containing 3–4 per cent silicon and as little as possible of other elements was highly magnetic, which was to prove important in the electrical industry (e.g. reducing the weight and bulk of electrical transformers). Hadfield took over the firm on the death of his father in 1888, but he continued to lay great stress on the need for laboratory research to improve the quality and range of products. The steel-casting side of the business led to a flourishing armaments industry, and this, together with their expertise in alloy steels, made Hadfield's one of the great names in Sheffield and British steel until, sadly, it succumbed along with so many other illustrious names during the British economic recession of 1983. Hadfield had a keen interest in metallurgical history, particularly in his characteristically thorough examination of the alloys of iron prepared by Faraday at the Royal Institution. Hadfield was an enlightened employer and was one of the first to introduce the eight-hour day.
    [br]
    Principal Honours and Distinctions
    Knighted 1908. Baronet 1917. FRS 1909.
    Bibliography
    A list of Hadfield's published papers and other works is published with a biographical account in Obituary Notices of Fellows of the Royal Society (1940) 10.
    LRD

    Biographical history of technology > Hadfield, Sir Robert Abbott

  • 6 Whitworth, Sir Joseph

    [br]
    b. 21 December 1803 Stockport, Cheshire, England
    d. 22 January 1887 Monte Carlo, Monaco
    [br]
    English mechanical engineer and pioneer of precision measurement.
    [br]
    Joseph Whitworth received his early education in a school kept by his father, but from the age of 12 he attended a school near Leeds. At 14 he joined his uncle's mill near Ambergate, Derbyshire, to learn the business of cotton spinning. In the four years he spent there he realized that he was more interested in the machinery than in managing a cotton mill. In 1821 he obtained employment as a mechanic with Crighton \& Co., Manchester. In 1825 he moved to London and worked for Henry Maudslay and later for the Holtzapffels and Joseph Clement. After these years spent gaining experience, he returned to Manchester in 1833 and set up in a small workshop under a sign "Joseph Whitworth, Tool Maker, from London".
    The business expanded steadily and the firm made machine tools of all types and other engineering products including steam engines. From 1834 Whitworth obtained many patents in the fields of machine tools, textile and knitting machinery and road-sweeping machines. By 1851 the company was generally regarded as the leading manufacturer of machine tools in the country. Whitworth was a pioneer of precise measurement and demonstrated the fundamental mode of producing a true plane by making surface plates in sets of three. He advocated the use of the decimal system and made use of limit gauges, and he established a standard screw thread which was adopted as the national standard. In 1853 Whitworth visited America as a member of a Royal Commission and reported on American industry. At the time of the Crimean War in 1854 he was asked to provide machinery for manufacturing rifles and this led him to design an improved rifle of his own. Although tests in 1857 showed this to be much superior to all others, it was not adopted by the War Office. Whitworth's experiments with small arms led on to the construction of big guns and projectiles. To improve the quality of the steel used for these guns, he subjected the molten metal to pressure during its solidification, this fluid-compressed steel being then known as "Whitworth steel".
    In 1868 Whitworth established thirty annual scholarships for engineering students. After his death his executors permanently endowed the Whitworth Scholarships and distributed his estate of nearly half a million pounds to various educational and charitable institutions. Whitworth was elected an Associate of the Institution of Civil Engineers in 1841 and a Member in 1848 and served on its Council for many years. He was elected a Member of the Institution of Mechanical Engineers in 1847, the year of its foundation.
    [br]
    Principal Honours and Distinctions
    Baronet 1869. FRS 1857. President, Institution of Mechanical Engineers 1856, 1857 and 1866. Hon. LLD Trinity College, Dublin, 1863. Hon. DCL Oxford University 1868. Member of the Smeatonian Society of Civil Engineers 1864. Légion d'honneur 1868. Society of Arts Albert Medal 1868.
    Bibliography
    1858, Miscellaneous Papers on Mechanical Subjects, London; 1873, Miscellaneous Papers on Practical Subjects: Guns and Steel, London (both are collections of his papers to technical societies).
    1854, with G.Wallis, The Industry of the United States in Machinery, Manufactures, and
    Useful and Ornamental Arts, London.
    Further Reading
    F.C.Lea, 1946, A Pioneer of Mechanical Engineering: Sir Joseph Whitworth, London (a short biographical account).
    A.E.Musson, 1963, "Joseph Whitworth: toolmaker and manufacturer", Engineering Heritage, Vol. 1, London, 124–9 (a short biography).
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 5, London, 797–802 (a short biography).
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (describes Whitworth's machine tools).
    RTS

    Biographical history of technology > Whitworth, Sir Joseph

  • 7 Talbot, Benjamin

    SUBJECT AREA: Metallurgy
    [br]
    b. 19 September 1864 Wellington, Shropshire, England
    d. 16 December 1947 Solberge Hall, Northallerton, Yorkshire, England
    [br]
    Talbot, William Henry Fox English steelmaker and businessman who introduced a technique for producing steel "continuously" in large tilting basic-lined open-hearth furnaces.
    [br]
    After spending some years at his father's Castle Ironworks and at Ebbw Vale Works, Talbot travelled to the USA in 1890 to become Superintendent of the Southern Iron and Steel Company of Chattanooga, Tennessee, where he initiated basic open-hearth steelmaking and a preliminary slag washing to remove silicon. In 1893 he moved to Pennsylvania as Steel Superintendent at the Pencoyd works; there, six years later, he began his "continuous" steelmaking process. Returning to Britain in 1900, Talbot marketed the technique: after ten years it was in successful use in Britain, continental Europe and the USA; it promoted the growth of steel production.
    Meanwhile its originator had joined the Cargo Fleet Iron Company Limited on Teesside, where he was made Managing Director in 1907. Twelve years later he assumed, in addition, the same position in the allied South Durham Steel and Iron Company Limited. While remaining Managing Director, he was appointed Deputy Chairman of both companies in 1925, and Chairman in 1940. The companies he controlled survived the depressed 1920s and 1930s and were significant contributors to British steel output, with a capacity of more than half a million tonnes per year.
    [br]
    Principal Honours and Distinctions
    President, Iron and Steel Institute 1928, and (British) National Federation of Iron and Steel Manufacturers. Iron and Steel Institute (London) Bessemer Gold Medal 1908. Franklin Institute (Philadelphia), Elliott Cresson Gold Medal, and John Scott Medal 1908.
    Bibliography
    1900, "The open-hearth continuous steel process", Journal of the Iron and Steel Institute 57 (1):33–61.
    1903, "The development of the continuous open-hearth process", Journal of the Iron and Steel Institute 63(1):57–73.
    1905, "Segregation in steel ingots", Journal of the Iron and Steel Institute 68(2):204–23. 1913, "The production of sound steel by lateral compression of the ingot whilst its centre is liquid", Journal of the Iron and Steel Institute 87(1):30–55.
    Further Reading
    G.Boyce, 1986, entry in Dictionary of Business Biography, Vol. V, ed. J.Jeremy, Butterworth.
    W.G.Willis, 1969, South Durham Steel and Iron Co. Ltd, South Durham Steel and Iron Company Ltd (includes a few pages specifically on Talbot, and a portrait photo). J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Cambridge, Mass.: Harvard University Press (mentions Talbot's business attitudes).
    JKA

    Biographical history of technology > Talbot, Benjamin

  • 8 Carnegie, Andrew

    SUBJECT AREA: Metallurgy
    [br]
    b. 25 November 1835 Dunfermline, Fife, Scotland
    d. 11 August 1919 Lenox, Massachusetts, USA
    [br]
    Scottish industrialist and philanthropist.
    [br]
    Andrew Carnegie was a highly successful entrepreneur and steel industrialist rather than an engineer, but he made a significant contribution to engineering both through his work in industry and through his philanthropic and educational activities. His parents emigrated to the United States in 1848 and the family settled in Pennsylvania. Beginning as a telegraph boy in Pittsburgh in 1850, the young Carnegie rose through successful enterprises in railways, bridges, locomotives and rolling stock, pursuing a process of "Vertical integration" in the iron and steel industry which led to him becoming the leading American ironmaster by 1881. His interests in the Carnegie Steel Company were incorporated in the United States Steel Corporation in 1901, when Carnegie retired from business and devoted himself to philanthropy. He was particularly involved in benefactions to provide public libraries in the United States, Great Britain and other English-speaking countries. Remembering his ancestry, he was especially generous toward Scottish universities, as a result of which he was elected Rector of the University of St Andrews, Scotland's oldest university, by its students. Other large endowments were made for funds in recognition of heroic deeds, and he financed the building of the Temple of Peace at The Hague.
    [br]
    Bibliography
    1889, The Gospel of Wealth (sets out his views on the responsible use of riches).
    Further Reading
    J.F.Wall, 1989, Andrew Carnegie, Pittsburgh: University of Pittsburgh Press.
    AB

    Biographical history of technology > Carnegie, Andrew

  • 9 Monell, Ambrose

    SUBJECT AREA: Metallurgy
    [br]
    b. 1874 New York, USA
    d. 2 May 1921 Beacon, New York, USA
    [br]
    American metallurgist who gave his name to a successful nickel-copper alloy.
    [br]
    After graduating from Columbia University in 1896. Monell became a metallurgical engineer to the Carnegie Steel Company, rising in six years to be Assistant to the President. In 1900, while Manager of the company's open-hearth steelworks at Pittsburg, he patented a procedure for making high-carbon steel in basic conditions on the hearth of a fixed/stationary furnace; the method was intended to refine pig-iron containing substantial proportions of phosphorus and to do so relatively quickly. The process was introduced at the Homestead Works of the Carnegie Steel Company in February 1900, where it continued in use for some years. In April 1902 Monell was among those who launched the International Nickel Company of New Jersey in order to bring together a number of existing nickel interests; he became the new company's President. In 1904–5, members of the company's metallurgical staff produced an alloy of about 70 parts nickel and 30 copper which seemed to show great commercial promise on account of its high resistance to corrosion and its good appearance. Monell agreed to the suggestion that the new alloy should be given his name; for commercial reasons it was marketed as "Monel metal". In 1917, following the entry of the USA into the First World War, Monell was commissioned Colonel in the US Army (Aviation) for overseas service, relinquishing his presidency of the International Nickel Company but remaining as a director. At the time of his death he was also a director in several other companies in the USA.
    [br]
    Bibliography
    1900, British patent no. 5506 (taken out by O. Imray on behalf of Monell).
    Monell insinuated an account of his steel-making procedure at a meeting of the Iron and Steel Institute held in London and reported in The Journal of the Iron and Steel
    Institute (1900) 1:71–80; some of the comments made by other speakers, particularly B.Talbot, were adverse. The following year (1901) Monell produced a general historical review: "A summary of development in open-hearth steel", Iron Trade
    Review 14(14 November):39–47.
    Further Reading
    A.J.Wadhams, 1931, "The story of the nickel industry", Metals and Alloys 2(3):166–75 (mentions Monell among many others, and includes a portrait (p. 170)).
    JKA

    Biographical history of technology > Monell, Ambrose

  • 10 Moulton, Alexander

    [br]
    b. 9 April 1920 Stratford-on-Avon
    [br]
    English inventor of vehicle suspension systems and the Moulton bicycle.
    [br]
    He spent his childhood at The Hall in Bradfordon-Avon. He was educated at Marlborough College, and in 1937 was apprenticed to the Sentinel Steam Wagon Company of Shrewsbury. About that same time he went to King's College, Cambridge, where he took the Mechanical Sciences Tripos. It was then wartime, and he did research on aero-engines at the Bristol Aeroplane Company, where he became Personal Assistant to Sir Roy Fedden. He left Bristol's in 1945 to join his family firm, Spencer \& Moulton, of which he eventually became Technical Director and built up the Research Department. In 1948 he invented his first suspension unit, the "Flexitor", in which an inner shaft and an outer shell were separated by an annular rubber body which was bonded to both.
    In 1848 his great-grandfather had founded the family firm in an old woollen mill, to manufacture vulcanized rubber products under Charles Goodyear's patent. The firm remained a family business with Spencer's, consultants in railway engineering, until 1956 when it was sold to the Avon Rubber Company. He then formed Moulton Developments to continue his work on vehicle suspensions in the stables attached to The Hall. Sponsored by the British Motor Corporation (BMC) and the Dunlop Rubber Company, he invented a rubber cone spring in 1951 which was later used in the BMC Mini (see Issigonis, Sir Alexander Arnold Constantine): by 1994 over 4 million Minis had been fitted with these springs, made by Dunlop. In 1954 he patented the Hydrolastic suspension system, in which all four wheels were independently sprung with combined rubber springs and damper assembly, the weight being supported by fluid under pressure, and the wheels on each side being interconnected, front to rear. In 1962 he formed Moulton Bicycles Ltd, having designed an improved bicycle system for adult use. The conventional bicycle frame was replaced by a flat-sided oval steel tube F-frame on a novel rubber front and rear suspension, with the wheel size reduced to 41 cm (16 in.) with high-pressure tyres. Raleigh Industries Ltd having refused his offer to produce the Moulton Bicycle under licence, he set up his own factory on his estate, producing 25,000 bicycles between 1963 and 1966. In 1967 he sold out to Raleigh and set up as Bicycle Consultants Ltd while continuing the suspension development of Moulton Developments Ltd. In the 1970s the combined firms employed some forty staff, nearly 50 per cent of whom were graduates.
    He won the Queen's Award for Industry in 1967 for technical innovation in Hydrolastic car suspension and the Moulton Bicycle. Since that time he has continued his innovative work on suspensions and the bicycle. In 1983 he introduced the AM bicycle series of very sophisticated space-frame design with suspension and 43 cm (17 in.) wheels; this machine holds the world speed record fully formed at 82 km/h (51 mph). The current Rover 100 and MGF use his Hydragas interconnected suspension. By 1994 over 7 million cars had been fitted with Moulton suspensions. He has won many design awards and prizes, and has been awarded three honorary doctorates of engineering. He is active in engineering and design education.
    [br]
    Principal Honours and Distinctions
    Queen's Award for Industry 1967; CBE; RDI. Fellow of the Royal Academy of Engineering.
    Further Reading
    P.R.Whitfield, 1975, Creativity in Industry, London: Penguin Books.
    IMcN

    Biographical history of technology > Moulton, Alexander

  • 11 Alleyne, Sir John Gay Newton

    SUBJECT AREA: Metallurgy
    [br]
    b. 8 September 1820 Barbados
    d. 20 February 1912 Falmouth, Cornwall, England
    [br]
    English iron and steel manufacturer, inventor of the reversing rolling mill.
    [br]
    Alleyne was the heir to a baronetcy created in 1769, which he succeeded to on the death of his father in 1870. He was educated at Harrow and at Bonn University, and from 1843 to 1851 he was Warden at Dulwich College, to the founder of which the family claimed to be related.
    Alleyne's business career began with a short spell in the sugar industry at Barbados, but he returned to England to enter Butterley Iron Works Company, where he remained for many years. He was at first concerned with the production of rolled-iron girders for floors, especially for fireproof flooring, and deck beams for iron ships. The demand for large sections exceeded the capacity of the small mills then in use at Butterley, so Alleyne introduced the welding of T-sections to form the required H-sections.
    In 1861 Alleyne patented a mechanical traverser for moving ingots in front of and behind a rolling mill, enabling one person to manipulate large pieces. In 1870 he introduced his major innovation, the two-high reversing mill, which enabled the metal to be passed back and forth between the rolls until it assumed the required size and shape. The mill had two steam engines, which supplied the motion in opposite directions. These two inventions produced considerable economies in time and effort in handling the metal and enabled much heavier pieces to be processed.
    During Alleyne's regime, the Butterley Company secured some notable contracts, such as the roof of St Paneras Station, London, in 1868, with the then-unparalleled span of 240 ft (73 m). The manufacture and erection of this awe-inspiring structure was a tribute to Alleyne's abilities. In 1872 he masterminded the design and construction of the large railway bridge over the Old Maas at Dordrecht, Holland. Alleyne also devised a method of determining small quantities of phosphorus in iron and steel by means of the spectroscope. In his spare time he was a skilled astronomical observer and metalworker in his private workshop.
    [br]
    Bibliography
    1875, "The estimation of small quantities of phosphorus in iron and steel by spectrum analysis", Journal of the Iron and Steel Institute: 62.
    Further Reading
    Obituary, 1912, Journal of the Iron and Steel Institute: 406–8.
    LRD

    Biographical history of technology > Alleyne, Sir John Gay Newton

  • 12 Dudley, Dud

    SUBJECT AREA: Metallurgy
    [br]
    b. 1599
    d. 25 October 1684 Worcester, England
    [br]
    English ironmaster who drew attention to the need to change from charcoal to coal as a fuel for iron smelting.
    [br]
    Dudley was the fourth natural son of Edward Sutton, fifth Baron Dudley. In 1619 he was summoned from Balliol College, Oxford, to superintend his father's ironworks at Pensnet in Worcestershire. There had long been concern at the destruction of the forests in order to make charcoal for the smelting of iron ore, and unsuccessful attempts had been made to substitute coal as a fuel. Finding that charcoal was in short supply and coal plentiful near Pensnet, Dudley was stimulated by these attempts to try the process for himself. He claimed to have made good, marketable iron and in 1621 his father obtained a patent from the King to protect his process for thirty-one years. After a serious flood, Dudley moved to Staffordshire and continued his efforts there. In 1639 he was granted a further patent for making iron with coal. Although he probably made some samples of good iron, more by luck than judgement, it is hardly possible that he achieved consistent success. He blamed this on the machinations of other ironmasters. The day that King Charles II landed in England to assume his throne', Dudley petitioned him to renew his patents, but he was refused and he ceased to promote his invention. In 1665, however, he published his celebrated book Metallum Martis, Iron Made with Pit-Coaky Sea-Coale…. In this he described his efforts in general terms, but neither there nor in his patents does he give any technical details of his methods. He implied the use of slack or small coal from the Staffordshire Thick or Ten Yard coal, but this has a sulphur content that would have rendered the iron unusable; in addition, this coal would not have been suitable for converting to coke in order to remove the sulphur. Nevertheless, Dudley recognized the need to change from charcoal to coal as a fuel for iron smelting and drew attention to it, even though he himself achieved little success.
    [br]
    Further Reading
    H.R.Schubert, 1957, History of the British Iron and Steel Industry AD 430 to AD 1775, London: Routledge \& Kegan Paul.
    W.K.V.Gale, 1967, The British Iron and Steel Industry: A Technical History, London (provides brief details of Dudley's life in relation to the history of ironmaking).
    LRD

    Biographical history of technology > Dudley, Dud

  • 13 Rowland, Thomas Fitch

    [br]
    b. 15 March 1831 New Haven, Connecticut, USA
    d. 13 December 1907 New York City, USA
    [br]
    American engineer and manufacturer, inventor of off-shore drilling.
    [br]
    The son of a grist miller, Rowland worked in various jobs until 1859 when he established his own business for the construction of wooden and iron steamships and for structural iron works, in Greenpoint, Long Island, New York. In 1860 he founded the Continental Works and during the American Civil War he started manufacturing gun carriages and mortar beds. He fitted out many vessels for the navy, and as a contractor for John Ericsson he built heavily armoured war vessels.
    He continued shipbuilding, but later diversified his business. He devoted great attention to the design of gas-works, constructing innovative storage facilities all over the United States, and he was concerned with the improvement of welding iron and steel plates and other processes in the steel industry. In the late 1860s he also began the manufacture of steam-engines and boilers for use in the new but expanding oil industry. In 1869 he took out a patent for a fixed platform for drilling for oil off-shore up to a depth of 15 m (49 ft). With this idea, just ten years after Edwin Drake's success in on-shore oil drilling in Titusville, Pennsylvania, Rowland pioneered the technology of off-shore drilling for petroleum in which the United States later became the leading nation.
    [br]
    Principal Honours and Distinctions
    American Society of Civil Engineers: Director 1871–3, Vice-President 1886–7, Honorary Member 1899.
    Further Reading
    "Thomas Fitch Rowland", Dictionary of American Biography.
    WK

    Biographical history of technology > Rowland, Thomas Fitch

  • 14 Charpy, Augustin Georges Albert

    SUBJECT AREA: Metallurgy
    [br]
    b. 1 September 1865 Ouillins, Rhône, France
    d. 25 November 1945 Paris, France
    [br]
    French metallurgist, originator of the Charpy pendulum impact method of testing metals.
    [br]
    After graduating in chemistry from the Ecole Polytechnique in 1887, Charpy continued to work there on the physical chemistry of solutions for his doctorate. He joined the Laboratoire d'Artillerie de la Marine in 1892 and began to study the structure and mechanical properties of various steels in relation to their previous heat treatment. His first memoir, on the mechanical properties of steels quenched from various temperatures, was published in 1892 on the advice of Henri Le Chatelier. He joined the Compagnie de Chatillon Commentry Fourchamboult et Decazeville at their steelworks in Imphy in 1898, shortly after the discovery of Invar by G.E. Guillaume. Most of the alloys required for this investigation had been prepared at Imphy, and their laboratories were therefore well equipped with sensitive and refined dilatometric facilities. Charpy and his colleague L.Grenet utilized this technique in many of their earlier investigations, which were largely concerned with the transformation points of steel. He began to study the magnetic characteristics of silicon steels in 1902, shortly after their use as transformer laminations had first been proposed by Hadfield and his colleagues in 1900. Charpy was the first to show that the magnetic hysteresis of these alloys decreased rapidly as their grain size increased.
    The first details of Charpy's pendulum impact testing machine were published in 1901, about two years before Izod read his paper to the British Association. As with Izod's machine, the energy of fracture was measured by the retardation of the pendulum. Charpy's test pieces, however, unlike those of Izod, were in the form of centrally notched beams, freely supported at each end against rigid anvils. This arrangement, it was believed, transmitted less energy to the frame of the machine and allowed the energy of fracture to be more accurately measured. In practice, however, the blow of the pendulum in the Charpy test caused visible distortion in the specimen as a whole. Both tests were still widely used in the 1990s.
    In 1920 Charpy left Imphy to become Director-General of the Compagnie des Aciéries de la Marine et Homecourt. After his election to the Académie des Sciences in 1918, he came to be associated with Floris Osmond and Henri Le Chatelier as one of the founders of the "French School of Physical Metallurgy". Around the turn of the century he had contributed much to the development of the metallurgical microscope and had helped to introduce the Chatelier thermocouple into the laboratory and to industry. He also popularized the use of platinum-wound resistance furnaces for laboratory purposes. After 1920 his industrial responsibilities increased greatly, although he continued to devote much of his time to teaching at the Ecole Supérieure des Mines in Paris, and at the Ecole Polytechnique. His first book, Leçons de Chimie (1892, Paris), was written at the beginning of his career, in association with H.Gautier. His last, Notions élémentaires de sidérurgie (1946, Paris), with P.Pingault as co-author, was published posthumously.
    [br]
    Bibliography
    Charpy published important metallurgical papers in Comptes rendus… Académie des Sciences, Paris.
    Further Reading
    R.Barthélémy, 1947, "Notice sur la vie et l'oeuvre de Georges Charpy", Notices et discours, Académie des Sciences, Paris (June).
    M.Caullery, 1945, "Annonce du décès de M.G. Charpy" Comptes rendus Académie des Sciences, Paris 221:677.
    P.G.Bastien, 1963, "Microscopic metallurgy in France prior to 1920", Sorby Centennial Symposium on the History of Metallurgy, AIME Metallurgical Society Conference Vol.27, pp. 171–88.
    ASD

    Biographical history of technology > Charpy, Augustin Georges Albert

  • 15 Harrison, John

    [br]
    b. 24 March 1693 Foulby, Yorkshire, England
    d. 24 March 1776 London, England
    [br]
    English horologist who constructed the first timekeeper of sufficient accuracy to determine longitude at sea and invented the gridiron pendulum for temperature compensation.
    [br]
    John Harrison was the son of a carpenter and was brought up to that trade. He was largely self-taught and learned mechanics from a copy of Nicholas Saunderson's lectures that had been lent to him. With the assistance of his younger brother, James, he built a series of unconventional clocks, mainly of wood. He was always concerned to reduce friction, without using oil, and this influenced the design of his "grasshopper" escapement. He also invented the "gridiron" compensation pendulum, which depended on the differential expansion of brass and steel. The excellent performance of his regulator clocks, which incorporated these devices, convinced him that they could also be used in a sea dock to compete for the longitude prize. In 1714 the Government had offered a prize of £20,000 for a method of determining longitude at sea to within half a degree after a voyage to the West Indies. In theory the longitude could be found by carrying an accurate timepiece that would indicate the time at a known longitude, but the requirements of the Act were very exacting. The timepiece would have to have a cumulative error of no more than two minutes after a voyage lasting six weeks.
    In 1730 Harrison went to London with his proposal for a sea clock, supported by examples of his grasshopper escapement and his gridiron pendulum. His proposal received sufficient encouragement and financial support, from George Graham and others, to enable him to return to Barrow and construct his first sea clock, which he completed five years later. This was a large and complicated machine that was made out of brass but retained the wooden wheelwork and the grasshopper escapement of the regulator clocks. The two balances were interlinked to counteract the rolling of the vessel and were controlled by helical springs operating in tension. It was the first timepiece with a balance to have temperature compensation. The effect of temperature change on the timekeeping of a balance is more pronounced than it is for a pendulum, as two effects are involved: the change in the size of the balance; and the change in the elasticity of the balance spring. Harrison compensated for both effects by using a gridiron arrangement to alter the tension in the springs. This timekeeper performed creditably when it was tested on a voyage to Lisbon, and the Board of Longitude agreed to finance improved models. Harrison's second timekeeper dispensed with the use of wood and had the added refinement of a remontoire, but even before it was tested he had embarked on a third machine. The balance of this machine was controlled by a spiral spring whose effective length was altered by a bimetallic strip to compensate for changes in temperature. In 1753 Harrison commissioned a London watchmaker, John Jefferys, to make a watch for his own personal use, with a similar form of temperature compensation and a modified verge escapement that was intended to compensate for the lack of isochronism of the balance spring. The time-keeping of this watch was surprisingly good and Harrison proceeded to build a larger and more sophisticated version, with a remontoire. This timekeeper was completed in 1759 and its performance was so remarkable that Harrison decided to enter it for the longitude prize in place of his third machine. It was tested on two voyages to the West Indies and on both occasions it met the requirements of the Act, but the Board of Longitude withheld half the prize money until they had proof that the timekeeper could be duplicated. Copies were made by Harrison and by Larcum Kendall, but the Board still continued to prevaricate and Harrison received the full amount of the prize in 1773 only after George III had intervened on his behalf.
    Although Harrison had shown that it was possible to construct a timepiece of sufficient accuracy to determine longitude at sea, his solution was too complex and costly to be produced in quantity. It had, for example, taken Larcum Kendall two years to produce his copy of Harrison's fourth timekeeper, but Harrison had overcome the psychological barrier and opened the door for others to produce chronometers in quantity at an affordable price. This was achieved before the end of the century by Arnold and Earnshaw, but they used an entirely different design that owed more to Le Roy than it did to Harrison and which only retained Harrison's maintaining power.
    [br]
    Principal Honours and Distinctions
    Royal Society Copley Medal 1749.
    Bibliography
    1767, The Principles of Mr Harrison's Time-keeper, with Plates of the Same, London. 1767, Remarks on a Pamphlet Lately Published by the Rev. Mr Maskelyne Under the
    Authority of the Board of Longitude, London.
    1775, A Description Concerning Such Mechanisms as Will Afford a Nice or True Mensuration of Time, London.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press.
    —1978, John Harrison and His Timekeepers, 4th edn, London: National Maritime Museum.
    H.Quill, 1966, John Harrison, the Man who Found Longitude, London. A.G.Randall, 1989, "The technology of John Harrison's portable timekeepers", Antiquarian Horology 18:145–60, 261–77.
    J.Betts, 1993, John Harrison London (a good short account of Harrison's work). S.Smiles, 1905, Men of Invention and Industry; London: John Murray, Chapter III. Dictionary of National Biography, Vol. IX, pp. 35–6.
    DV

    Biographical history of technology > Harrison, John

  • 16 Abel, Sir Frederick August

    [br]
    b. 17 July 1827 Woolwich, London, England
    d. 6 September 1902 Westminster, London, England
    [br]
    English chemist, co-inventor of cordite find explosives expert.
    [br]
    His family came from Germany and he was the son of a music master. He first became interested in science at the age of 14, when visiting his mineralogist uncle in Hamburg, and studied chemistry at the Royal Polytechnic Institution in London. In 1845 he became one of the twenty-six founding students, under A.W.von Hofmann, of the Royal College of Chemistry. Such was his aptitude for the subject that within two years he became von Hermann's assistant and demonstrator. In 1851 Abel was appointed Lecturer in Chemistry, succeeding Michael Faraday, at the Royal Military Academy, Woolwich, and it was while there that he wrote his Handbook of Chemistry, which was co-authored by his assistant, Charles Bloxam.
    Abel's four years at the Royal Military Academy served to foster his interest in explosives, but it was during his thirty-four years, beginning in 1854, as Ordnance Chemist at the Royal Arsenal and at Woolwich that he consolidated and developed his reputation as one of the international leaders in his field. In 1860 he was elected a Fellow of the Royal Society, but it was his studies during the 1870s into the chemical changes that occur during explosions, and which were the subject of numerous papers, that formed the backbone of his work. It was he who established the means of storing gun-cotton without the danger of spontaneous explosion, but he also developed devices (the Abel Open Test and Close Test) for measuring the flashpoint of petroleum. He also became interested in metal alloys, carrying out much useful work on their composition. A further avenue of research occurred in 1881 when he was appointed a member of the Royal Commission set up to investigate safety in mines after the explosion that year in the Sealham Colliery. His resultant study on dangerous dusts did much to further understanding on the use of explosives underground and to improve the safety record of the coal-mining industry. The achievement for which he is most remembered, however, came in 1889, when, in conjunction with Sir James Dewar, he invented cordite. This stable explosive, made of wood fibre, nitric acid and glycerine, had the vital advantage of being a "smokeless powder", which meant that, unlike the traditional ammunition propellant, gunpowder ("black powder"), the firer's position was not given away when the weapon was discharged. Although much of the preliminary work had been done by the Frenchman Paul Vieille, it was Abel who perfected it, with the result that cordite quickly became the British Army's standard explosive.
    Abel married, and was widowed, twice. He had no children, but died heaped in both scientific honours and those from a grateful country.
    [br]
    Principal Honours and Distinctions
    Grand Commander of the Royal Victorian Order 1901. Knight Commander of the Most Honourable Order of the Bath 1891 (Commander 1877). Knighted 1883. Created Baronet 1893. FRS 1860. President, Chemical Society 1875–7. President, Institute of Chemistry 1881–2. President, Institute of Electrical Engineers 1883. President, Iron and Steel Institute 1891. Chairman, Society of Arts 1883–4. Telford Medal 1878, Royal Society Royal Medal 1887, Albert Medal (Society of Arts) 1891, Bessemer Gold Medal 1897. Hon. DCL (Oxon.) 1883, Hon. DSc (Cantab.) 1888.
    Bibliography
    1854, with C.L.Bloxam, Handbook of Chemistry: Theoretical, Practical and Technical, London: John Churchill; 2nd edn 1858.
    Besides writing numerous scientific papers, he also contributed several articles to The Encyclopaedia Britannica, 1875–89, 9th edn.
    Further Reading
    Dictionary of National Biography, 1912, Vol. 1, Suppl. 2, London: Smith, Elder.
    CM

    Biographical history of technology > Abel, Sir Frederick August

  • 17 Darby, Abraham

    SUBJECT AREA: Metallurgy
    [br]
    b. 1678 near Dudley, Worcestershire, England
    d. 5 May 1717 Madely Court, Coalbrookdale, Shropshire, England
    [br]
    English ironmaster, inventor of the coke smelting of iron ore.
    [br]
    Darby's father, John, was a farmer who also worked a small forge to produce nails and other ironware needed on the farm. He was brought up in the Society of Friends, or Quakers, and this community remained important throughout his personal and working life. Darby was apprenticed to Jonathan Freeth, a malt-mill maker in Birmingham, and on completion of his apprenticeship in 1699 he took up the trade himself in Bristol. Probably in 1704, he visited Holland to study the casting of brass pots and returned to Bristol with some Dutch workers, setting up a brassworks at Baptist Mills in partnership with others. He tried substituting cast iron for brass in his castings, without success at first, but in 1707 he was granted a patent, "A new way of casting iron pots and other pot-bellied ware in sand without loam or clay". However, his business associates were unwilling to risk further funds in the experiments, so he withdrew his share of the capital and moved to Coalbrookdale in Shropshire. There, iron ore, coal, water-power and transport lay close at hand. He took a lease on an old furnace and began experimenting. The shortage and expense of charcoal, and his knowledge of the use of coke in malting, may well have led him to try using coke to smelt iron ore. The furnace was brought into blast in 1709 and records show that in the same year it was regularly producing iron, using coke instead of charcoal. The process seems to have been operating successfully by 1711 in the production of cast-iron pots and kettles, with some pig-iron destined for Bristol. Darby prospered at Coalbrookdale, employing coke smelting with consistent success, and he sought to extend his activities in the neighbourhood and in other parts of the country. However, ill health prevented him from pursuing these ventures with his previous energy. Coke smelting spread slowly in England and the continent of Europe, but without Darby's technological breakthrough the ever-increasing demand for iron for structures and machines during the Industrial Revolution simply could not have been met; it was thus an essential component of the technological progress that was to come.
    Darby's eldest son, Abraham II (1711–63), entered the Coalbrookdale Company partnership in 1734 and largely assumed control of the technical side of managing the furnaces and foundry. He made a number of improvements, notably the installation of a steam engine in 1742 to pump water to an upper level in order to achieve a steady source of water-power to operate the bellows supplying the blast furnaces. When he built the Ketley and Horsehay furnaces in 1755 and 1756, these too were provided with steam engines. Abraham II's son, Abraham III (1750–89), in turn, took over the management of the Coalbrookdale works in 1768 and devoted himself to improving and extending the business. His most notable achievement was the design and construction of the famous Iron Bridge over the river Severn, the world's first iron bridge. The bridge members were cast at Coalbrookdale and the structure was erected during 1779, with a span of 100 ft (30 m) and height above the river of 40 ft (12 m). The bridge still stands, and remains a tribute to the skill and judgement of Darby and his workers.
    [br]
    Further Reading
    A.Raistrick, 1989, Dynasty of Iron Founders, 2nd edn, Ironbridge Gorge Museum Trust (the best source for the lives of the Darbys and the work of the company).
    H.R.Schubert, 1957, History of the British Iron and Steel Industry AD 430 to AD 1775, London: Routledge \& Kegan Paul.
    LRD

    Biographical history of technology > Darby, Abraham

  • 18 Ilgner, Karl

    SUBJECT AREA: Electricity
    [br]
    b. 27 July 1862 Neisse, Upper Silesia (now Nysa, Poland)
    d. 18 January 1921 Berthelsdorf, Silesia
    [br]
    German electrical engineer, inventor of a transformer for electromotors.
    [br]
    Ilgner graduated from the Gewerbeakademie (the forerunner of the Technical University) in Berlin. As the representative of an electric manufacturing company in Breslau (now Wroclaw, Poland) from 1897, he was confronted with the fact that there were no appropriate drives for hoisting-engines or rolling-plants in steelworks. Two problems prevented the use of high-capacity electric motors in the mining as well as in the iron and steel industry: the reactions of the motors on the circuit at the peak point of stress concentration; and the complicated handling of the control system which raised the risks regarding safety. Having previously been head of the department of electrical power transmission in Hannover, he was concerned with the development of low-speed direct-current motors powered by gas engines.
    It was Harry Ward Leonard's switchgear for direct-current motors (USA, 1891) that permitted sudden and exact changes in the speed and direction of rotation without causing power loss, as demonstrated in the driving of a rolling sidewalk at the Paris World Fair of 1900. Ilgner connected this switchgear to a large and heavy flywheel which accumulated the kinetic energy from the circuit in order to compensate shock loads. With this combination, electric motors did not need special circuits, which were still weak, because they were working continuously and were regulated individually, so that they could be used for driving hoisting-engines in mines, rolling-plants in steelworks or machinery for producing tools and paper. Ilgner thus made a notable advance in the general progress of electrification.
    His transformer for hoisting-engines was patented in 1901 and was commercially used inter alia by Siemens \& Halske of Berlin. Their first electrical hoisting-engine for the Zollern II/IV mine in Dortmund gained international reputation at the Düsseldorf exhibition of 1902, and is still preserved in situ in the original machine hall of the mine, which is now a national monument in Germany. Ilgner thereafter worked with several companies to pursue his conception, became a consulting engineer in Vienna and Breslau and had a government post after the First World War in Brussels and Berlin until he retired for health reasons in 1919.
    [br]
    Bibliography
    1901, DRP no. 138, 387 1903, "Der elektrische Antrieb von Reversier-Walzenstraßen", Stahl und Eisen 23:769– 71.
    Further Reading
    W.Kroker, "Karl Ilgner", Neue Deutsche Biographie, Vol. X, pp. 134–5. W.Philippi, 1924, Elektrizität im Bergbau, Leipzig (a general account).
    K.Warmbold, 1925, "Der Ilgner-Umformer in Förderanlagen", Kohle und Erz 22:1031–36 (a detailed description).
    WK

    Biographical history of technology > Ilgner, Karl

  • 19 run

    run [rʌn]
    course1 (a), 1 (b) excursion1 (c) trajet1 (e) vol1 (f) série1 (i), 1 (k) tendance1 (l) ruée1 (m) diriger2 (a) organiser2 (b) (faire) marcher2 (c), 3 (k) courir2 (e), 3 (a), 3 (b) transporter2 (i) conduire2 (k) (faire) passer2 (l), 2 (m), 3 (d) se sauver3 (c) couler3 (h), 3 (i) fondre3 (i) circuler3 (l) durer3 (m) être à l'affiche3 (n) (se) présenter2 (q), 3 (r)
    (pt ran [ræn], pp run, cont running)
    1 noun
    (a) (action) course f;
    he took a short run and cleared the gate après un court élan il a franchi la barrière;
    at a run en courant;
    to go for a run aller faire du jogging;
    to go for a 5-mile run courir 8 kilomètres;
    I took the dog for a run in the park j'ai emmené le chien courir dans le parc;
    two policemen arrived at a run deux policiers sont arrivés au pas de course;
    to break into a run se mettre à courir;
    to make a run for it prendre la fuite, se sauver;
    the murderer is on the run le meurtrier est en cavale;
    she was on the run from her creditors/the police elle essayait d'échapper à ses créanciers/à la police;
    we've got them on the run! nous les avons mis en déroute!;
    figurative we have the run of the house while the owners are away nous disposons de toute la maison pendant l'absence des propriétaires;
    we give the au pair the run of the place nous laissons à la jeune fille au pair la libre disposition de la maison;
    you've had a good run (for your money), it's time to step down tu en as bien profité, maintenant il faut laisser la place à un autre;
    they gave the Russian team a good run for their money ils ont donné du fil à retordre à l'équipe soviétique;
    familiar to have the runs (diarrhoea) avoir la courante
    (b) (race) course f;
    a charity run une course de charité
    (c) (drive) excursion f, promenade f;
    we went for a run down to the coast nous sommes allés nous promener au bord de la mer;
    she took me for a run in her new car elle m'a emmené faire un tour dans sa nouvelle voiture;
    humorous shall I make or do a beer run? je vais chercher de la bière?;
    I do the school run in the morning c'est moi qui emmène les enfants à l'école tous les matins
    (d) (for smuggling) passage m;
    the gang used to make runs across the border le gang passait régulièrement la frontière
    (e) (route, itinerary) trajet m, parcours m;
    the buses on the London to Glasgow run les cars qui font le trajet ou qui assurent le service Londres-Glasgow;
    he used to do the London (to) Glasgow run (pilot, bus or train driver) il faisait la ligne Londres-Glasgow;
    it's only a short run into town le trajet jusqu'au centre-ville n'est pas long;
    there was very little traffic on the run down nous avons rencontré très peu de circulation
    (f) Aviation (flight) vol m, mission f;
    bombing run mission f de bombardement
    (g) Sport (in cricket, baseball) point m;
    to make 10 runs marquer 10 points
    (h) (track → for skiing, bobsleighing) piste f
    (i) (series, sequence) série f, succession f, suite f;
    they've had a run of ten defeats ils ont connu dix défaites consécutives;
    the recent run of events la récente série d'événements;
    a run of bad luck une série ou suite de malheurs;
    you seem to be having a run of good/bad luck on dirait que la chance est/n'est pas de ton côté en ce moment;
    the play had a triumphant run on Broadway la pièce a connu un succès triomphal à Broadway;
    the play had a run of nearly two years la pièce a tenu l'affiche (pendant) presque deux ans;
    to have a long run (of fashion, person in power) tenir longtemps; (of play) tenir longtemps l'affiche;
    in the long/short run à long/court terme
    (k) (of product) lot m, série f; (of book) tirage m;
    a run of fewer than 500 would be uneconomical fabriquer une série de moins de 500 unités ne serait pas rentable
    (l) (general tendency, trend) tendance f;
    to score against the run of play marquer contre le jeu;
    I was lucky and got the run of the cards j'avais de la chance, les cartes m'étaient favorables;
    the usual run of colds and upset stomachs les rhumes et les maux de ventre habituels;
    she's well above the average or ordinary run of students elle est bien au-dessus de la moyenne des étudiants;
    the ordinary run of mankind le commun des mortels;
    in the ordinary run of things normalement, en temps normal;
    out of the common run hors du commun
    (m) (great demand → on product, currency, Stock Exchange) ruée f (on sur);
    the heatwave caused a run on suntan cream la vague de chaleur provoqua une ruée sur les crèmes solaires;
    a run on the banks un retrait massif des dépôts bancaires;
    Stock Exchange there was a run on the dollar il y a eu une ruée sur le dollar
    (n) (operation → of machine) opération f;
    computer run passage m machine
    (o) (bid → in election) candidature f;
    his run for the presidency sa candidature à la présidence
    (p) (ladder → in stocking, tights) échelle f, maille f filée;
    I've got a run in my tights mon collant est filé
    (q) (enclosure → for animals) enclos m;
    chicken run poulailler m
    (r) (of salmon) remontée f
    (s) Music roulade f
    (a) (manage → company, office) diriger, gérer; (→ shop, restaurant, club) tenir; (→ theatre) diriger; (→ farm) exploiter; (→ newspaper, magazine) rédiger; (→ house) tenir; (→ country) gouverner, diriger;
    she runs the bar while her parents are away elle tient le bar pendant l'absence de ses parents;
    a badly run organization une organisation mal gérée;
    the library is run by volunteer workers la bibliothèque est tenue par des bénévoles;
    the farm was too big for him to run alone la ferme était trop grande pour qu'il puisse s'en occuper seul;
    who's running this outfit? qui est le patron ici?;
    I wish she'd stop trying to run my life! j'aimerais bien qu'elle arrête de me dire comment vivre ma vie!
    (b) (organize, lay on → service, course, contest) organiser; (→ train, bus) mettre en service;
    to run a bridge tournament/a raffle organiser un tournoi de bridge/une tombola;
    they run evening classes in computing ils organisent des cours du soir en informatique;
    they run extra trains in the summer l'été ils mettent (en service) des trains supplémentaires;
    several private companies run buses to the airport plusieurs sociétés privées assurent un service d'autobus pour l'aéroport
    (c) (operate → piece of equipment) faire marcher, faire fonctionner; Computing (program) exécuter, faire tourner;
    you can run it off solar energy/the mains vous pouvez le faire fonctionner à l'énergie solaire/sur secteur;
    this computer runs most software on peut utiliser la plupart des logiciels sur cet ordinateur;
    Aviation to run the engines (for checking) faire le point fixe;
    I can't afford to run a car any more je n'ai plus les moyens d'avoir une voiture;
    she runs a Porsche elle roule en Porsche
    (d) (conduct → experiment, test) effectuer
    (e) (do or cover at a run → race, distance) courir;
    to run the marathon courir le marathon;
    I can still run 2 km in under 7 minutes j'arrive encore à courir ou à couvrir 2 km en moins de 7 minutes;
    the children were running races les enfants faisaient la course;
    the race will be run in Paris next year la course aura lieu à Paris l'année prochaine;
    to run messages or errands faire des commissions ou des courses;
    he'd run a mile if he saw it il prendrait ses jambes à son cou s'il voyait ça;
    it looks as if his race is run on dirait qu'il a fait son temps
    to be run off one's feet être débordé;
    you're running the poor boy off his feet! le pauvre, tu es en train de l'épuiser!;
    to run oneself to a standstill courir jusqu'à l'épuisement
    (g) (enter for race → horse, greyhound) faire courir
    (h) (hunt, chase) chasser;
    to run deer chasser le cerf;
    the outlaws were run out of town les hors-la-loi furent chassés de la ville
    (i) (transport → goods) transporter; (give lift to → person) conduire, emmener;
    I'll run you to the bus stop je vais te conduire à l'arrêt de bus;
    to run sb back home reconduire qn chez lui;
    I've got to run these boxes over to my new house je dois emporter ces boîtes dans ma nouvelle maison
    (j) (smuggle) faire le trafic de;
    he's suspected of running drugs/guns il est soupçonné de trafic de drogue/d'armes
    (k) (drive → vehicle) conduire;
    I ran the car into the driveway j'ai mis la voiture dans l'allée;
    could you run your car back a bit? pourriez-vous reculer un peu votre voiture?;
    I ran my car into a lamppost je suis rentré dans un réverbère (avec ma voiture);
    he tried to run me off the road! il a essayé de me faire sortir de la route!
    (l) (pass, quickly or lightly) passer;
    he ran his hand through his hair il se passa la main dans les cheveux;
    he ran a comb through his hair il se donna un coup de peigne;
    I'll run a duster over the furniture je passerai un coup de chiffon sur les meubles;
    she ran her hands over the controls elle promena ses mains sur les boutons de commande;
    she ran her finger down the list/her eye over the text elle parcourut la liste du doigt/le texte des yeux
    it would be better to run the wires under the floorboards ce serait mieux de faire passer les fils sous le plancher;
    we could run a cable from the house nous pourrions amener un câble de la maison;
    run the other end of the rope through the loop passez l'autre bout de la corde dans la boucle
    (n) (go through or past → blockade) forcer; (→ rapids) franchir; American (→ red light) brûler
    (o) (cause to flow) faire couler;
    run the water into the basin faites couler l'eau dans la cuvette;
    to run a bath faire couler un bain
    (p) (publish) publier;
    the local paper is running a series of articles on the scandal le journal local publie une série d'articles sur le scandale;
    to run an ad (in the newspaper) passer ou faire passer une annonce (dans le journal)
    they're running a candidate in every constituency ils présentent un candidat dans chaque circonscription
    to run a temperature or fever avoir de la fièvre
    to run the danger or risk of doing sth courir le risque de faire qch;
    you run the risk of a heavy fine vous risquez une grosse amende;
    do you realize the risks you're running? est-ce que vous réalisez les risques que vous prenez?
    (a) (gen) courir;
    I run every morning in the park je cours tous les matins dans le parc;
    to come running towards sb accourir vers qn;
    they ran out of the house ils sont sortis de la maison en courant;
    to run upstairs/downstairs monter/descendre l'escalier en courant;
    I had to run for the train j'ai dû courir pour attraper le train;
    she ran for the police elle a couru chercher la police;
    run and fetch me a glass of water cours me chercher un verre d'eau;
    I'll just run across or round or over to the shop je fais un saut à l'épicerie;
    to run to meet sb courir ou se précipiter à la rencontre de qn;
    I've been running all over the place looking for you j'ai couru partout à ta recherche;
    figurative I didn't expect her to go running to the press with the story je ne m'attendais pas à ce qu'elle coure raconter l'histoire à la presse;
    don't come running to me with your problems ne viens pas m'embêter avec tes problèmes
    (b) (compete in race) courir; (score in cricket, baseball) marquer;
    to run in a race (horse, person) participer à une course;
    there are twenty horses running in the race vingt chevaux participent à la course;
    she ran for her country in the Olympics elle a couru pour son pays aux jeux Olympiques
    (c) (flee) se sauver, fuir;
    run for your lives! sauve qui peut!;
    familiar if the night watchman sees you, run for it! si le veilleur de nuit te voit, tire-toi ou file!;
    figurative you can't just keep running from your past vous ne pouvez pas continuer à fuir votre passé
    (d) (pass → road, railway, boundary) passer;
    a tunnel runs under the mountain un tunnel passe sous la montagne;
    the railway line runs through a valley/over a viaduct le chemin de fer passe dans une vallée/sur un viaduc;
    the pipes run under the road les tuyaux passent sous la route;
    the road runs alongside the river/parallel to the coast la route longe la rivière/la côte;
    hedgerows run between the fields des haies séparent les champs;
    the road runs due north la route va droit vers le nord;
    to run north and south être orienté nord-sud;
    a canal running from London to Birmingham un canal qui va de Londres à Birmingham;
    a high fence runs around the building une grande barrière fait le tour du bâtiment;
    the lizard has red markings running down its back le dos du lézard est zébré de rouge;
    the line of print ran off the page la ligne a débordé de la feuille;
    figurative our lives seem to be running in different directions il semble que nos vies prennent des chemins différents
    (e) (move, go → ball, vehicle) rouler; (slip, slide → rope, cable) filer;
    the pram ran down the hill out of control le landau a dévalé la côte;
    the tram runs on special tracks le tramway roule sur des rails spéciaux;
    the crane runs on rails la grue se déplace sur des rails;
    the piano runs on casters le piano est monté sur (des) roulettes;
    the truck ran off the road le camion a quitté la route;
    let the cord run through your hands laissez la corde filer entre vos mains;
    his fingers ran over the controls ses doigts se promenèrent sur les boutons de commande;
    her eyes ran down the list elle parcourut la liste des yeux;
    a shiver ran down my spine un frisson me parcourut le dos;
    his thoughts ran to that hot August day in Paris cette chaude journée d'août à Paris lui revint à l'esprit
    (f) (words, text)
    how does that last verse run? c'est quoi la dernière strophe?;
    their argument or reasoning runs something like this voici plus ou moins leur raisonnement;
    the conversation ran something like this voilà en gros ce qui s'est dit
    (g) (spread → rumour, news) se répandre
    (h) (flow → river, water, tap, nose) couler;
    let the water run until it's hot laisse couler l'eau jusqu'à ce qu'elle soit chaude;
    the water's run cold l'eau est froide au robinet;
    you've let the water run cold tu as laissé couler l'eau trop longtemps, elle est devenue froide;
    your bath is running ton bain est en train de couler;
    your nose is running tu as le nez qui coule;
    the cold made our eyes run le froid nous piquait les yeux;
    the hot water runs along/down this pipe l'eau chaude passe/descend dans ce tuyau;
    their faces were running with sweat leurs visages ruisselaient de transpiration;
    tears ran down her face des larmes coulaient sur son visage;
    the streets were running with blood le sang coulait dans les rues;
    the river ran red with blood les eaux de la rivière étaient rouges de sang;
    the Jari runs into the Amazon le Jari se jette dans l'Amazone
    (i) (butter, ice cream, wax) fondre; (cheese) couler; (paint) goutter;
    her mascara had run son mascara avait coulé
    (j) (in wash → colour, fabric) déteindre;
    wash that dress separately, the colour might run lave cette robe à part, elle pourrait déteindre
    (k) (operate → engine, machine, business) marcher, fonctionner;
    to run on or off electricity/gas/diesel fonctionner à l'électricité/au gaz/au diesel;
    this machine runs off the mains cet appareil se branche sur (le) secteur;
    the tape recorder was still running le magnétophone était encore en marche;
    leave the engine running laissez tourner le moteur;
    the engine is running smoothly le moteur tourne rond;
    the new assembly line is up and running la nouvelle chaîne de montage est en service;
    Computing do not interrupt the program while it is running ne pas interrompre le programme en cours d'exécution;
    Computing this software runs on DOS ce logiciel tourne sous DOS;
    Computing running at… cadencé à…;
    figurative everything is running smoothly tout marche très bien
    this train doesn't run/only runs on Sundays ce train ne circule pas/ne circule que le dimanche;
    some bus lines run all night certaines lignes d'autobus sont en service toute la nuit;
    the buses stop running at midnight après minuit il n'y a plus de bus;
    trains running between London and Manchester trains qui circulent entre Londres et Manchester;
    trains running to Calais are cancelled les trains à destination de Calais sont annulés;
    he took the tube that runs through Clapham il prit la ligne de métro qui passe par Clapham
    (m) (last) durer; (be valid → contract) être ou rester valide; (→ agreement) être ou rester en vigueur; Finance (→ interest) courir;
    the sales run from the beginning to the end of January les soldes durent du début à la fin janvier;
    the sales have only another two days to run il ne reste que deux jours de soldes;
    the meeting ran for an hour longer than expected la réunion a duré une heure de plus que prévu;
    I'd like the ad to run for a week je voudrais que l'annonce passe pendant une semaine;
    the lease has another year to run le bail n'expire pas avant un an;
    your subscription will run for two years votre abonnement sera valable deux ans;
    interest runs from 1 January les intérêts courent à partir du 1er janvier
    (n) Cinema & Theatre (be performed → play, film) être à l'affiche;
    the play has been running for a year la pièce est à l'affiche depuis un an;
    the film is currently running in Hull le film est actuellement sur les écrans à Hull;
    his new musical should run and run! sa nouvelle comédie musicale devrait tenir l'affiche pendant des mois!;
    Television this soap opera has been running for twenty years ça fait vingt ans que ce feuilleton est diffusé;
    America's longest-running TV series la plus longue série télévisée américaine
    (o) (occur → inherited trait, illness)
    twins run in our family les jumeaux sont courants dans la famille;
    heart disease runs in the family les maladies cardiaques sont fréquentes dans notre famille
    (p) (range) aller;
    the colours run from dark blue to bright green les couleurs vont du bleu foncé au vert vif
    to run high (sea) être grosse ou houleuse;
    feelings or tempers were running high les esprits étaient échauffés;
    their ammunition was running low ils commençaient à manquer de munitions;
    our stores are running low nos provisions s'épuisent ou tirent à leur fin;
    he's running scared il a la frousse;
    to be running late être en retard, avoir du retard;
    programmes are running ten minutes late les émissions ont toutes dix minutes de retard;
    sorry I can't stop, I'm running a bit late désolé, je ne peux pas rester, je suis un peu en retard;
    events are running in our favour les événements tournent en notre faveur;
    inflation was running at 18 percent le taux d'inflation était de 18 pour cent
    (r) (be candidate, stand) se présenter;
    to run for president or the presidency se présenter aux élections présidentielles, être candidat aux élections présidentielles ou à la présidence;
    to run for office se porter candidat;
    she's running on a law-and-order ticket elle se présente aux élections avec un programme basé sur la lutte contre l'insécurité;
    he ran against Reagan in 1984 il s'est présenté contre Reagan en 1984
    (s) (drive) faire un tour ou une promenade;
    why don't we run down to the coast/up to London? si on faisait un tour jusqu'à la mer/jusqu'à Londres?
    to run (before the wind) filer vent arrière;
    to run aground échouer; figurative (project, plan) capoter
    (u) (ladder → stocking, tights) filer
    (v) (salmon) remonter les rivières
    (w) (tide) monter
    British courir (çà et là);
    I've been running about all day looking for you! j'ai passé ma journée à te chercher partout!
    (meet → acquaintance) rencontrer par hasard, tomber sur; (find → book, reference) trouver par hasard, tomber sur
    traverser en courant
    also figurative courir après;
    it's not like her to run after a man ce n'est pas son genre de courir après un homme;
    she spends half her life running after her kids elle passe son temps à être derrière les enfants;
    he's got all these assistants running after him the whole time il a tout un tas d'assistants qui passent sans arrêt derrière ce qu'il fait
    (go away) s'en aller, partir;
    it's getting late, I must be running along il se fait tard, il faut que j'y aille;
    run along to bed now, children! allez les enfants, au lit maintenant!
    (a) (from place to place) courir (çà et là) ;
    I've been running around all day looking for you! j'ai passé ma journée à te chercher partout!
    (b) (be unfaithful → husband) courir après les femmes; (→ wife) courir après les hommes;
    he was sure his wife was running around il était sûr que sa femme le trompait
    familiar (be friendly with) fréquenter ; (have affair with) sortir avec ;
    he's always running around with other women il est toujours en train de courir après d'autres femmes
    (a) (flee) se sauver, s'enfuir;
    their son has run away from home leur fils a fait une fugue;
    I'll be with you in a minute, don't run away je serai à toi dans un instant, ne te sauve pas;
    run away and play now, children allez jouer ailleurs, les enfants;
    figurative to run away from one's responsibilities fuir ses responsabilités;
    to run away from the facts se refuser à l'évidence
    (b) (elope) partir
    he ran away with his best friend's wife il est parti avec la femme de son meilleur ami;
    he ran away with the takings il est parti avec la caisse
    she tends to let her imagination run away with her elle a tendance à se laisser emporter par son imagination
    (c) (get → idea)
    don't go running away with the idea or the notion that it will be easy n'allez pas vous imaginer que ce sera facile
    (d) (win → race, match) emporter haut la main; (→ prize) remporter;
    they ran away with nearly all the medals ils ont remporté presque toutes les médailles
    (a) (drive back) raccompagner (en voiture);
    she ran me back home elle m'a ramené ou raccompagné chez moi en voiture;
    he ran me back on his motorbike il m'a raccompagné en moto
    (b) (rewind → tape, film) rembobiner
    (a) (return) retourner ou revenir en courant;
    familiar to come running back (errant husband etc) revenir
    to run back over sth passer qch en revue
    to run sth by sb (submit) soumettre qch à qn;
    you'd better run that by the committee vous feriez mieux de demander l'avis du comité;
    run that by me again répétez-moi ça
    (a) (reduce, diminish → gen) réduire; (→ number of employees) diminuer; (→ stocks) laisser s'épuiser; (→ industry, factory) fermer progressivement;
    they are running down their military presence in Africa ils réduisent leur présence militaire en Afrique;
    the government was accused of running down the steel industry le gouvernement a été accusé de laisser dépérir la sidérurgie;
    you've run the battery down vous avez déchargé la pile; (of car) vous avez vidé ou déchargé la batterie, vous avez mis la batterie à plat
    (b) familiar (criticize, denigrate) rabaisser ;
    they're always running her friends down ils passent leur temps à dire du mal de ou à dénigrer ses amis ;
    stop running yourself down all the time cesse de te rabaisser constamment
    (c) (in car → pedestrian, animal) renverser, écraser;
    he was run down by a bus il s'est fait renverser par un bus
    (d) (track down → animal, criminal) (traquer et) capturer; (→ person, object) dénicher;
    I finally ran down the reference in the library j'ai fini par dénicher la référence à la bibliothèque
    (a) (person) descendre en courant
    (b) (clock, machine) s'arrêter; (battery → through use) s'user; (→ through a fault) se décharger;
    the batteries in the radio are beginning to run down les piles de la radio commencent à être usées
    run in
    (a) British (car, engine) roder
    (a) (person) entrer en courant
    (b) British (car, engine)
    running in en rodage
    (a) (encounter → problem, difficulty) rencontrer
    (b) (meet → acquaintance) rencontrer (par hasard), tomber sur;
    to run into debt faire des dettes, s'endetter
    (c) (collide with → of car, driver) percuter, rentrer dans;
    I ran into a lamppost je suis rentrée dans un réverbère;
    you should be more careful, you nearly ran into me! tu devrais faire attention, tu as failli me rentrer dedans!
    (d) (amount to) s'élever à;
    debts running into millions of dollars des dettes qui s'élèvent à des millions de dollars;
    takings run into five figures la recette atteint les cinq chiffres
    (e) (merge into) se fondre dans, se confondre avec;
    the red runs into orange le rouge devient orange;
    the words began to run into each other before my eyes les mots commençaient à se confondre devant mes yeux
    run off
    (a) (print) tirer, imprimer; (photocopy) photocopier;
    run me off five copies of this report faites-moi cinq copies de ce rapport
    (c) Sport (race) disputer;
    the heats will be run off tomorrow les éliminatoires se disputeront demain
    (d) (lose → excess weight, fat) perdre en courant
    (e) (liquid) laisser s'écouler
    (a) (flee) se sauver, s'enfuir;
    I'll be with you in a minute, don't run off je serai à toi dans un instant, ne te sauve pas
    (b) (liquid) s'écouler
    run on
    (lines of writing) ne pas découper en paragraphes; (letters, words) ne pas séparer, lier
    (a) (continue) continuer, durer; (drag on) s'éterniser;
    the play ran on for hours la pièce a duré des heures;
    the discussion ran on for an extra hour la discussion a duré une heure de plus que prévu
    (b) familiar (talk non-stop) parler sans cesse ;
    he does run on rather quand il est parti celui-là, il ne s'arrête plus;
    he can run on for hours if you let him si tu le laisses faire il peut tenir le crachoir pendant des heures
    (c) (line of text) suivre sans alinéa; (verse) enjamber
    run out
    (a) (cable, rope) laisser filer
    to run a batsman out mettre un batteur hors jeu
    (a) (person, animal) sortir en courant; (liquid) s'écouler
    (b) (be used up → supplies, money etc) s'épuiser, (venir à) manquer; (→ time) filer;
    hurry up, time is running out! dépêchez-vous, il ne reste plus beaucoup de temps!;
    their luck finally ran out la chance a fini par tourner, leur chance n'a pas duré
    (c) (expire → contract, passport, agreement) expirer, venir à expiration
    manquer de;
    we're running out of ammunition nous commençons à manquer de munitions;
    we're running out of sugar nous allons nous trouver à court de sucre;
    he's run out of money il n'a plus d'argent;
    to run out of patience être à bout de patience;
    to run out of petrol tomber en panne d'essence
    (spouse, colleague) laisser tomber, abandonner;
    she ran out on her husband elle a quitté son mari;
    his assistants all ran out on him ses assistants l'ont tous abandonné ou laissé tomber
    (pedestrian, animal) écraser;
    I nearly got run over j'ai failli me faire écraser;
    he's been run over il s'est fait écraser;
    the car ran over his legs la voiture lui est passé sur les jambes
    (a) (review) revoir; (rehearse) répéter; (recap) récapituler;
    let's run over the arguments one more time before the meeting reprenons les arguments une dernière fois avant la réunion;
    could you run over the main points for us? pourriez-vous nous récapituler les principaux points?
    to run over the allotted time excéder le temps imparti
    (a) (overflow) déborder;
    literary my cup runneth over je nage dans le bonheur;
    to run over with energy/enthusiasm déborder d'énergie/d'enthousiasme
    (b) (run late) dépasser l'heure; Radio & Television dépasser le temps d'antenne, déborder sur le temps d'antenne;
    the programme ran over by twenty minutes l'émission a dépassé son temps d'antenne de vingt minutes
    passer en courant
    (a) (cross → of person) traverser en courant;
    figurative money runs through his fingers like water l'argent lui brûle les doigts
    (b) (pervade → of thought, feeling)
    a strange idea ran through my mind une idée étrange m'a traversé l'esprit;
    a thrill of excitement ran through her un frisson d'émotion la parcourut;
    an angry murmur ran through the crowd des murmures de colère parcoururent la foule;
    his words kept running through my head ses paroles ne cessaient de retentir dans ma tête;
    an air of melancholy runs through the whole film une atmosphère de mélancolie imprègne tout le film
    (c) (review) revoir; (rehearse) répéter; (recap) récapituler;
    she ran through the arguments in her mind elle repassa les arguments dans sa tête;
    let's just run through the procedure one more time reprenons une dernière fois la marche à suivre;
    I'll run through your speech with you je vous ferai répéter votre discours
    (d) (read quickly) parcourir (des yeux), jeter un coup d'œil sur
    (e) (use up → money) dépenser; (→ case of wine, coffee) consommer; (squander → fortune) gaspiller;
    he runs through a dozen shirts a week il lui faut une douzaine de chemises par semaine
    to run sb through (with a sword) transpercer qn (d'un coup d'épée)
    (a) (amount to) se chiffrer à;
    her essay ran to twenty pages sa dissertation faisait vingt pages
    (b) British (afford, be enough for)
    your salary should run to a new computer ton salaire devrait te permettre d'acheter un nouvel ordinateur;
    the budget won't run to champagne le budget ne nous permet pas d'acheter du champagne
    run up
    (a) (debt, bill) laisser s'accumuler;
    I've run up a huge overdraft j'ai un découvert énorme
    (b) (flag) hisser
    (c) (sew quickly) coudre rapidement ou à la hâte
    (climb rapidly) monter en courant; (approach) approcher en courant;
    a young man ran up to me un jeune homme s'approcha de moi en courant
    (encounter) se heurter à;
    we've run up against some problems nous nous sommes heurtés à quelques problèmes

    Un panorama unique de l'anglais et du français > run

  • 20 Chevenard, Pierre Antoine Jean Sylvestre

    SUBJECT AREA: Metallurgy
    [br]
    b. 31 December 1888 Thizy, Rhône, France
    d. 15 August 1960 Fontenoy-aux-Roses, France
    [br]
    French metallurgist, inventor of the alloys Elinvar and Platinite and of the method of strengthening nickel-chromium alloys by a precipitate ofNi3Al which provided the basis of all later super-alloy development.
    [br]
    Soon after graduating from the Ecole des Mines at St-Etienne in 1910, Chevenard joined the Société de Commentry Fourchambault et Decazeville at their steelworks at Imphy, where he remained for the whole of his career. Imphy had for some years specialized in the production of nickel steels. From this venture emerged the first austenitic nickel-chromium steel, containing 6 per cent chromium and 22–4 per cent nickel and produced commercially in 1895. Most of the alloys required by Guillaume in his search for the low-expansion alloy Invar were made at Imphy. At the Imphy Research Laboratory, established in 1911, Chevenard conducted research into the development of specialized nickel-based alloys. His first success followed from an observation that some of the ferro-nickels were free from the low-temperature brittleness exhibited by conventional steels. To satisfy the technical requirements of Georges Claude, the French cryogenic pioneer, Chevenard was then able in 1912 to develop an alloy containing 55–60 per cent nickel, 1–3 per cent manganese and 0.2–0.4 per cent carbon. This was ductile down to −190°C, at which temperature carbon steel was very brittle.
    By 1916 Elinvar, a nickel-iron-chromium alloy with an elastic modulus that did not vary appreciably with changes in ambient temperature, had been identified. This found extensive use in horology and instrument manufacture, and even for the production of high-quality tuning forks. Another very popular alloy was Platinite, which had the same coefficient of thermal expansion as platinum and soda glass. It was used in considerable quantities by incandescent-lamp manufacturers for lead-in wires. Other materials developed by Chevenard at this stage to satisfy the requirements of the electrical industry included resistance alloys, base-metal thermocouple combinations, magnetically soft high-permeability alloys, and nickel-aluminium permanent magnet steels of very high coercivity which greatly improved the power and reliability of car magnetos. Thermostatic bimetals of all varieties soon became an important branch of manufacture at Imphy.
    During the remainder of his career at Imphy, Chevenard brilliantly elaborated the work on nickel-chromium-tungsten alloys to make stronger pressure vessels for the Haber and other chemical processes. Another famous alloy that he developed, ATV, contained 35 per cent nickel and 11 per cent chromium and was free from the problem of stress-induced cracking in steam that had hitherto inhibited the development of high-power steam turbines. Between 1912 and 1917, Chevenard recognized the harmful effects of traces of carbon on this type of alloy, and in the immediate postwar years he found efficient methods of scavenging the residual carbon by controlled additions of reactive metals. This led to the development of a range of stabilized austenitic stainless steels which were free from the problems of intercrystalline corrosion and weld decay that then caused so much difficulty to the manufacturers of chemical plant.
    Chevenard soon concluded that only the nickel-chromium system could provide a satisfactory basis for the subsequent development of high-temperature alloys. The first published reference to the strengthening of such materials by additions of aluminium and/or titanium occurs in his UK patent of 1929. This strengthening approach was adopted in the later wartime development in Britain of the Nimonic series of alloys, all of which depended for their high-temperature strength upon the precipitated compound Ni3Al.
    In 1936 he was studying the effect of what is now known as "thermal fatigue", which contributes to the eventual failure of both gas and steam turbines. He then published details of equipment for assessing the susceptibility of nickel-chromium alloys to this type of breakdown by a process of repeated quenching. Around this time he began to make systematic use of the thermo-gravimetrie balance for high-temperature oxidation studies.
    [br]
    Principal Honours and Distinctions
    President, Société de Physique. Commandeur de la Légion d'honneur.
    Bibliography
    1929, Analyse dilatométrique des matériaux, with a preface be C.E.Guillaume, Paris: Dunod (still regarded as the definitive work on this subject).
    The Dictionary of Scientific Biography lists around thirty of his more important publications between 1914 and 1943.
    Further Reading
    "Chevenard, a great French metallurgist", 1960, Acier Fins (Spec.) 36:92–100.
    L.Valluz, 1961, "Notice sur les travaux de Pierre Chevenard, 1888–1960", Paris: Institut de France, Académie des Sciences.
    ASD

    Biographical history of technology > Chevenard, Pierre Antoine Jean Sylvestre

См. также в других словарях:

  • Steel Workers Organizing Committee — The Steel Workers Organizing Committee was one of two precursor labor organizations to the United Steelworkers. It was formed by the CIO (Congress of Industrial Organizations) in 1936. It disbanded in 1942 to become the United Steel Workers of… …   Wikipedia

  • Industry of China — Industry produced 53.1 percent of China’s gross domestic product (GDP) in 2005. Industry (including mining, manufacturing, construction, and power) contributed 52.9 percent of GDP in 2004 and occupied 22.5 percent of the workforce. The… …   Wikipedia

  • Industry of the People's Republic of China — Industry produced 53.7 percent of the People s Republic of China’s gross domestic product (GDP) in 2005. Industry (including mining, manufacturing, construction, and power) contributed 46.8 percent of GDP in 2010 and occupied 27 percent of the… …   Wikipedia

  • Steel strike of 1959 — The steel strike of 1959 was a 1959 labor union strike by the United Steelworkers of America (USWA) against major steel making companies in the United States.The strike occurred over management s demand that the union give up a contract clause… …   Wikipedia

  • The Death of Superman — Cover of Superman vol. 2, 75 (Jan 1993). Art by Dan Jurgens Brett Breeding. Publisher DC Comics …   Wikipedia

  • Steel, Peech and Tozer — was a large steel maker with works situated at Ickles and Templeborough, in the Don Valley on the outskirts of Rotherham, South Yorkshire, England. History An area of land, almost a crescent shape through Masbrough and Ickles, on the edge of the… …   Wikipedia

  • Industry Foundation Classes — The Industry Foundation Classes (IFC) data model is a neutral and open specification that is not controlled by a single vendor or group of vendors. It is an object oriented file format with a data model developed by the International Alliance for …   Wikipedia

  • Steel-toe boots — (also known as safety toe boots, steel capped boots or safety boots) are durable boots or shoes that have a protective reinforcement in the toe, usually combined with a sole plate, which protect the foot from falling objects and punctures from… …   Wikipedia

  • The Elder Scrolls IV: Oblivion — The Elder Scrolls IV: Oblivion …   Wikipedia

  • Steel Winds — (or Steel Winds I ) is a wind energy project located on the coast of Lake Erie in Lackawanna, New York, just south of the City of Buffalo proper in Erie County. The project is situated on 30 acres of the 1600 acre brownfield that was the former… …   Wikipedia

  • The Doobie Brothers — Doobie Brothers in Berkeley, California, September 11, 1982. L to R: : Michael Hossack, Patrick Simmons, John Hartman, Tom Johnston. Background information Origin San Jose …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»